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A quantum positioning system (QPS) is proposed that can provide a user with
all four of his space-time coordinates. The user must carry a corner cube re-
flector, a good clock, and have a two-way classical channel of communication
with the origin of the reference frame. Four pairs of entangled photons (bipho-
tons) are sent through four interferometers: three interferometers are used to
determine the user’s spatial position, and an additional interferometer is used to
synchronize the user’s clock to coordinate time in the reference frame. The spa-
tial positioning part of the QPS is similar to a classical time-of-arrival (TOA)
system; however, a classical TOA system (such as GPS) must have synchro-
nized clocks that keep coordinate time and, therefore, the clocks must have long-
term stability, whereas in the QPS only a photon coincidence counter is needed
and the clocks need only have short-term stability. Several scenarios are consid-
ered for a QPS: one is a terrestrial system and another is a space-based system
composed of low-Earth orbit (LEO) satellites. Calculations indicate that for a
space-based system, neglecting atmospheric effects, a position accuracy below the
1 cm level is possible for much of the region near the Earth. The QPS may be
used as a primary system to define a global four-dimensional reference frame.

I. INTRODUCTION

During the past several years, the Global Positioning System (GPS) has practically become a
household word. The GPS is a U.S. Department of Defense satellite system that is used by both
the military and civilians for navigation and time dissemination [1-3]. Automobile, ship, aircraft,
and spacecraft use the GPS for navigation. Telephone and computer network systems that require
precise time use the GPS for time synchronization. The GPS is a complex system consisting
of approximately 24 satellites orbiting the Earth in circular orbits at approximately 4.25 Earth
radii. The GPS is designed so that signals travel line-of-site from satellite to user, and from any
place on Earth at least four satellites are in view. If a user receives four GPS satellite signals
simultaneously from four satellites, s = 1, 2, 3, 4, and the satellites’ space-time coordinates (ts, rs)
at time of transmission are known, the user can solve for his unknown space-time coordinates,
(to, ro), by solving the four equations [4, 5].
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|ro − rs|2 − c2(to − ts)2 = 0, s = 1, ...4 (1)

In Eq. (1) we assume that the signals travel on four light cones that are centered at the reception
event and we have ignored atmospheric delays. The actual signals that the GPS satellites transmit
are continuous-wave circularly polarized radio-frequency signals on two carrier frequencies in the
L-band centered about: L1 ≈ 1575.42 MHz and L2 ≈ 1227.6 MHz. The carrier-frequency signals
are modulated by a pseudorandom noise (PRN) code. A GPS receiver makes a phase-difference
measurement, called a pseudorange measurement, which is the phase difference between the PRN
code received from the satellite and an identical copy of the PRN code that is replicated inside the
GPS receiver; see [5] for details of the GPS pseudorange measurement process. The pseudorange
measurement is essentially made by performing a correlation of the code bits in the PRN code
received from the satellite with an identical copy of the same PRN code replicated inside the GPS
receiver.

Recently, there have been several proposals for synchronizing clocks by making use of entangled
quantum systems [6-12]. The question naturally arises whether entangled quantum systems can
be exploited to determine all four space-time coordinates of a user, rather than just time.

In this article, I describe a quantum positioning system (QPS) that is in principle capable of
providing a user with all four of his space-time coordinates. This QPS is the quantum analog of
the classical GPS described above. The QPS is based on entangled photon pairs (biphotons) and
second order correlations within each pair. The two-photon coincidence counting rate is the basic
measured quantity. In order to determine his four space-time coordinates, a user of the QPS must
carry a corner cube reflector, a good clock, and have a two-way classical channel for communication
with the origin of the reference frame.

II. INTERFEROMETRIC QUANTUM POSITIONING SYSTEM

For simplicity of discussion, I assume that space-time is flat with Minkowski [5] coordinates
(t, x, y, z) and that the user of the QPS is stationary. The complete QPS consists of four biphoton
sources (entangled photon pairs), four beam splitters and four two-photon coincidence counting
Hong-Ou-Mandel (HOM) interferometers; see Figure 1. Three of the interferometers are used
together to solve for the user’s position and one interferometer is used to solve for the user’s time,
in a particular reference frame.

Six spatial points, Ri, where Ri = (xi, yi, zi), for i = 1, 2, 3, ..., 6, define the spatial part of
the reference frame at constant coordinate time t. The six points Ri define three independent
baselines in pairs, (R1,R2), (R3,R4), and (R5,R6). The points Ri are assumed to be accurately
surveyed, so their coordinates are precisely known. Determination of a user’s spatial coordinates,
ro = (xo, yo, zo), is done with respect to this reference frame. A stationary clock in this reference
frame, say at the origin of coordinates, (x, y, z) = (0, 0, 0), provides a measure of coordinate time t
in this four-dimensional system of coordinates. We neglect all gravitational effects [4] so that the
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user’s clock, which keeps proper time τ , runs at the same rate as coordinate time t in the reference
frame defined by the spatial points Ri, so that dτ/dt = 1 . Synchronization of the user’s clock
to coordinate time [13]means that we have a method to compute the integration constant τo in
τ − τo = t. In four-dimensional flat space-time, the world lines of the spatial points Ri define
a tube. Events that are simultaneous in this system of four-dimensional coordinates occur at
constant values of coordinate time t, which is a hyperplane that cuts this tube.

There are several possible modes for the QPS. First, consider a user that must determine all four
of his space-time coordinates (to, xo, yo, zo). In a previous paper [12], an algorithm has been given
to synchronize the proper time τ on a user’s clock to coordinate time, t, without prior knowledge
of the geometric range from the reference clock (which keeps coordinate time t) to the user clock.
We assume that this algorithm is employed here to synchronize the user’s clock with coordinate
time t. This algorithm requires a two-way classical channel of communication between the user
and the reference frame origin, where coordinate time t is kept. The three spatial coordinates are
determined separately as follows (refer to Figure 1).

Each baseline, such as the one connected by points, (R1,R2), contains an entangled photon pair
(biphoton) source [14-18] located in the baseline. For convenience, we take the biphoton source to
be at the midpoint of the baseline at point E1 at position r1. Additionally, each baseline contains
a 50:50 beam splitter and two photon detectors; see Figure 2. For simplicity of discussion, we
assume that the biphoton source is essentially collocated with the beam splitter and two photon
detectors at point E1; see Figure 2. Along the baseline there is a controllable optical delay at
point D1. The other two baselines contain the same equipment, as shown in Figure 2. The QPS
works as follows.

Photon pairs are created at E1, are sent to positions R1 and R2, and are redirected to the user
at the unknown position ro. The two photon paths are similar, except that one path has
a controllable optical delay D1. The optical delay is assumed to be calibrated so that we can
accurately impose an arbitrary delay time [19]. Next, the entangled photons reflect from the
user’s corner cube reflector at ro, and return back through the same paths, through points R1 and
R2, and arrive at a HOM interferometer that is collocated at E1 at position r1; see Figure 2. For
convenience, we assume that the interferometer is collocated with the photon generation point r1.
Again, both photon return paths are similar, but one path has the optical delay D1. We have the
following effective round-trip times for each photon path

tL = 2
c [|ro −R1|+ |R1 − r1|] (2)

tR = 2
c [|ro −R2|+ |r1 −R2|+ (n− 1) d]

where d is the geometric thickness of the optical delay D1 perpendicular to the optical path and n
is the effective index of refraction for the optical delay D1. The optical delay D1 is now adjusted
until a minimum is observed in the two-photon counting rate at E1 [15]. When the minimum in
photon coincidence counting rate is observed at interferometer E1, the effective travel times for
each photon path are equal, tL = tR. The interferometer is balanced when the condition tL = tR is
satisfied, and a unique minimum is observed in the two-photon counting rate Rc. The accuracy with
which this minimum can be observed depends on the bandwidth ∆ω of the band-pass interference
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filters used in front of the photon detectors.

We get an equation that relates the geometric path lengths to the measured optical delay time
∆t1 = (n− 1)d/c:

|ro −R1|+ |R1 − r1| = |ro −R2|+ |r1 −R2|+ c∆t1 (3)

An analogous measurement process is carried out for the other two baselines. For simplicity, I
assume that the points E1, E2, and E3 are located at midpoints of their baselines. We then obtain
the three equations

|ro −R1| = |ro −R2|+ s1 (4)

|ro −R3| = |ro −R4|+ s2 (5)

|ro −R5| = |ro −R6|+ s3 (6)

where si = c∆ti for i = 1, 2, 3.

The two-photon coincidence counting rate is given by [20-22]

Rc = α1α2|ηV |2|G(0)|2[1− e−(∆ω∆t1)2 ] (7)

where |V |2 is the pump intensity in photons per second, α1 and α2 are the quantum efficiencies
of detectors D1 and D2, η is a dimensionless constant and G(t) is the Fourier transform of the
spectral function φ, which is the auotocorrelation function of the down-converted light

G(t) =

∞∫

0

φ(1
2ω0 + ω, 1

2ω0 − ω)e−iωtdω (8)

The Eqs. (4)-(6) can be solved for the three unknown user spatial coordinates, ro = (xo, yo, zo), in
terms of the three measured time delays, ∆t1, ∆t2, ∆t3, which balanced the three interferometers.
The measured data consists of photon coincidence count rate vs. optical time delay lengths si, for
i = 1, 2, 3. Clearly a search must be done of the data to locate the minimum that corresponds to
equal time of travel along the interferometer arms. The computations can be done at points E1, E2,
and E3. This search to locate the minimum is the quantum analog of the correlation of the PRN
code in a classical GPS receiver, which was described above. When the three interferometers at
E1, E2, and E3 have been balanced simultaneously, a classical message is sent to the user giving him
the values of his coordinates ro = (xo, yo, zo). Clearly, classical communication is needed between
the points r1, r2, and r3 to establish that the interferometers are balanced at a given coordinate
time t. We imagine that when each interferometer is balanced, a message is sent to the origin of
coordinates. When three messages are simultaneously received at the origin of coordinates (saying
that the three interferometers are balanced), Eqs. (4)-(6) are solved for the user’s coordinates
ro = (xo, yo, zo) and the user’s coordinates are sent to the user through a classical channel of
communication.
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In the QPS that we describe, there is an apparent asymmetry in the determination of a user’s
spatial coordinates, ro = (xo, yo, zo), and in the determination of the user’s time. In my view, this
asymmetry is a reflection of the asymmetric way that space and time enter in the theory of the
quantized electromagnetic field to give rise to photons as quanta of the field. As mentioned above,
the time synchronization of the user’s clock to coordinate time is done by a method previously
described by Bahder and Golding [12]. Therefore in what follows, I discuss only the spatial part
of the QPS.

With some modification of the above scheme, we may imagine that we could design a similar
system based on first-order coherence for position determination [20, 21]. A single beam from a
continuous-wave laser can be split and the beams sent on two different paths. However, in such a
case, there would be an ambiguity that is associated with the wavelength of the light (interference
fringes will be seen) that is unresolvable in principle. In contrast, in the quantum case (which
relies on second-order coherence) the ambiguity is resolved because equal propagation times for two
paths lead to quantum interference: equal travel times for two paths create a unique observable
minimum in the two-photon coincidence counting rate Rc.

The measured quantities in the QPS are the optical path delays si. For a given measured value of
optical delay, say s1, Eq.(4) specifies that the user’s coordinates must lie on a hyperboloid surface
with foci at R1 and R2, i.e., a hyperbola of revolution that is symmetric about the baseline defined
by R1 and R2. The user’s position, ro, is then given by the intersection of three hyperbolas
given by Eqs. (4)-(6). Each Eq. (4)-(6) is just the equation for a baseline in a classical time
of arrival (TOA) system that records arrival times of classical light pulses (or distinct intensity
edges) at two spatial reception points Ri. In the case of a classical TOA system, pulse arrival
time at four locations is needed to determine all four space-time coordinates. In that case, four
time difference of arrival (TDOA) equations can be formed from four points, and each point is used
multiply to (effectively) form the baselines. (Taking TDOAs results in a system of three equations
where the emission event time has cancelled out.) In the quantum case, since correlations between
photon pairs are used, we must use three baselines defined by six points Ri, plus an additional
interferometer for the determination of the user’s time. As we will see below, the QPS is an
interferometric system.

More fundamentally, and more significant for applications, is that in the classical case of a TOA
system, we must have good clocks that are synchronized to coordinate time so that accurate pulse
arrival times at the four Ri reception points can be recorded. A good clock that keeps coordinate
time is often a difficult requirement to meet in practice [23]. In contrast, in the quantum case
two-photon coincidence counts at detectors D1and D2 are measured and only a good ”flywheel”
clock is needed (i.e., a clock having a good short-term stability) to measure photon coincidence
count rates while the optical time delay is adjusted, to locate the minimum in Rc.

While the QPS that I describe is similar to the classical GPS, there are significant differences. In
the case of the GPS, if a user does not know his coordinate time, then he must observe signals from
four satellites, even if he only wants to determine his spatial coordinates. In the case of the QPS,
a user can determine his spatial coordinates without having to determine his coordinate time (by
using three HOM interferometers). A more fundamental distinction between QPS and GPS is
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that the GPS is a one-way signal travel system, whereas the QPS is a two-way system. Furthermore,
in the GPS classical information (consisting of emission event time at the satellite) is carried in
the PRN code bit numbers broadcast by the GPS satellites, whereas in the QPS no information is
carried by the photons. Therefore, it seems that there is no classical analog of the QPS that can
be implemented with PRN codes (which are deterministic and periodic in time).

III. GEOMETRIC DILUTION OF PRECISION

In the case of the classical GPS, the geometrical positions of the GPS satellites determine the
accuracy of the user’s position. This effect is sometimes called the geometric dilution of precision
(GDOP). We compute the positioning accuracy and the effect of GDOP for the QPS from Eqs.
(4)-(6). These equations give an implicit relation ro = ro(R1,R2,R3,R4,R5,R6, s1, s2, s3) for the
user position ro as a function of the three measured path delays, si, and the six baseline endpoints
Ri. If we knew the error in the measured path length delays, ds1, ds2,and ds3, we could compute
the error in the three components of the user’s position vector, dro = (dxo, dyo, dzo, ), from

dro =
3∑

i=1

∂ro
∂si

dsi (9)

for constant Ri. However, these errors are statistical in nature, so instead I compute the standard
deviations σx, σy, and σz, of the user coordinates xo, yo, and zo, as a function of the standard
deviations σs1 , σs2 , and σs3 , of the measured optical time delays s1, s2, and s3. For constant Rk

for k = 1, ..., 6, these standard deviations are related by [24]

σ2
x =

(
∂xo
∂s1

)2
σ2

s1
+

(
∂xo
∂s2

)2
σ2

s2
+

(
∂xo
∂s3

)2
σ2

s3
(10)

σ2
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(
∂yo
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)2
σ2
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(
∂yo
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+

(
∂yo
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(
∂zo
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)2
σ2
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(
∂zo
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σ2
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∂zo
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)2
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where the partial derivatives are done at constant Rk. The lengthy calculation to compute the
partial derivatives in Eq. (10) is done analytically using Mathematica. For simplicity, I assume
that the error distributions of the si are Gaussian and that the three standard deviations are
equal, σs1 = σs2 = σs3 ≡ σs. For a spherically symmetric probability distribution of three-
dimensional positions ro = (xo, yo, zo), the spherical error probable (SEP), which is the radius R
within which 50% of the points lie, is related [25]to the standard deviations σx = σy = σz ≡ σ
by R ∼= 1.538σ. In our case, the probability distribution of ro is not necessarily spherical. To
approximate the SEP error metric, we compute a weighted approximation to the SEP metric
by defining Rxyz

∼= 1.538 1√
3
(σ2

x + σ2
y + σ2

z)
1/2. When the error distribution for ro is spherically

symmetrical, the error metrics are equal: Rxyz = R. I consider the effect of GDOP for two
cases, one in which the interferometer baselines are near each other, and the other case where the
baselines are well separated, which is the case with classical GPS or a classical TOA system.
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A. Geodetic Positioning System

First, consider a case where the three baselines coincide with the three Cartesian coordinate
axes of a reference frame; see Figure 3. Such a case might occur when the baselines are on the
Earth, and we want to determine the position of an object with respect to a topocentric coordinate
system. For example, consider the center of the QPS at the origin of Cartesian coordinates and
an object with a corner reflector at a range of 100m from the QPS, with coordinates (xo, yo, zo) =
(100m)(1, 1, 1)/

√
3. Figure 4 shows a plot of contours of constant values of 1/Rxyz in the xo − yo

plane at zo = 100/
√

3 m, for the interferometer arm (half) length a = 2m and error (standard
deviation) in optical path σs = 1.0 × 10−6 m. In the contour plot, the position error is Rxyz =
8.3 cm for (xo, yo, zo) = (100m)(1, 1, 1)/

√
3, whereas for (xo, yo, zo) = (30m, 30m, 100/

√
3) the

error Rxyz = 3.9 cm, which corresponds to the upper right high-accuracy (light-shaded) region in
Figure 4. On the z-axis at xo = yo = 0 and zo = 100m the error Rxyz is essentially infinite. Figure
5 shows a plot of the error metric Rxyz vs. xo, for yo = 30m and zo = 100 m/

√
3, which corresponds

to a line in Figure 4 with relatively small error Rxyz. In the high-accuracy light-shaded region
of Figure 4, for xo = yo = 30 m and zo = 100 m/

√
3, the dependence of the error Rxyz on the

baseline length 2a is plotted in Figure 6, also using σs = 1.0× 10−6 m. For a four-meter baseline,
2a = 4 m, the error is just under 5 cm.

Note that the position error Rxyz depends linearly on σs, which is the standard deviation (error) in
measurement of the optical path delay needed to obtain the minimum in two-photon coincidence
counts Rc. The width of this minimum depends on the interference filters in front of the photon
coincidence counting detectors as well as the pump laser bandwidth [15, 26]. Depending on the
experimental design, this minimum may be measured to better than σs = 1.0× 10−6 m, which was
used in these plots, and hence accuracies may be better than plotted.

Finally, I note that the error function Rxyz has a very complex dependence on user coordinates
(xo, yo, zo), and as stated earlier, the error function Rxyz also depends critically on the way the
baselines are distributed, i.e., it depends on the six points Rk for k = 1, ..., 6, which define the
baseline endpoints. In the next example, I consider a situation where the baselines do not intersect,
and thereby the error Rxyz is considerably smaller than for the case considered above, even though
the distances are larger.

B. Satellite-Based QPS

Now assume that each point of a baseline, Ri, is associated with a different satellite, and that the
spatial interferometer legs are formed from pairs of points (R1,R2), (R3,R4), and (R5,R6); see
Figure 7. Specifically, I assume that the points Rk, are on low-Earth orbit (LEO) satellites. It
may seem optimistic that a QPS is feasible with such large baselines because single photons must
be propagated over these baselines and then reliably detected. However, recently single photons
have been propagated through the atmosphere and detected over 10 km distance in daylight
[27],and another study concludes that there are no obstacles to create a single-photon quantum
key distribution system between ground and low-Earth orbiting satellites [28]. Therefore, a LEO-
satellite QPS may be possible.
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As an example of the positioning errors in a QPS made from LEO satellites, I take the baseline
endpoints to be: R1 = (a,−b/2, 0), R2 = (a, b/2, 0), R3 = (b/2, a, 0), R4 = (−b/2, a, 0), R5 =
(−b/(2

√
2),−b/(2

√
2), a), and R6 = (b/(2

√
2), b/(2

√
2), a). A plot of this configuration is shown

in Figure 7. A contour plot of the reciprocal error function, 1/Rxyz, is shown in the xo− yo plane
for zo = Re/

√
3, where Re = 6378 km is the Earth’s radius, see Figure 8. As an example, in the

calculations below I take the semi-major axis of the LEO satellites to be a = 7360 km and the
baseline between pairs of satellites as b = 20 km. The standard deviation (error) in the measured
optical delay is taken to be σs = 1.0µm. For a user on the surface of the Earth with coordinates
(xo, yo, zo) = (1, 1, 1)Re/

√
3 the error is Rxyz = 0.10 cm . For these same parameters, Figure 9

shows a plot of the position error Rxyz vs. xo for yo = zo = Re/
√

3. Note that over a large range
of xo-values the error remains below 1 cm. Finally, Figure 10 shows a plot of the position error
in the radial direction: Rxyz

(
ro/
√

3, ro/
√

3, ro/
√

3
)

vs. ro for the same parameters. On a radial
line in the (1,1,1) direction, the error remains below 1 cm up to ro = 11680 km . However, near
1300 km the error rises steeply. This is an example of the complex dependence of Rxyz on user
position, which was mentioned earlier.

Clearly, the geometric positioning and layout of the baselines significantly affects the accuracy of
a user’s position. Note that the terrestrial QPS (discussed in the previous section) had a ratio
of baseline length to user position a/ro = 0.02, whereas this LEO satellite QPS has b/a = 0.003.
By comparing the baseline layout for the terrestrial QPS and this LEO satellite QPS, it is clear
that the positioning accuracy is sensitive to the separation and layout of the baselines, but not so
sensitive to the baseline lengths. Other calculations (not shown) support this conclusion.

The above calculations for a satellite-based QPS are only meant as an example to illustrate the
magnitude of errors in position that may be achievable. A significant amount of engineering
calculations must be performed to design a realist satellite-based QPS. Furthermore, real satellites
are moving and engineering similar to that used in the classical GPS would have to be done, e.g.,
using Kalman filtering techniques. Obviously, bright sources of entangled photons (biphotons)
are needed. The calculations above suggest that if properly engineered, a satellite-based QPS may
achieve position accuracy of objects near the Earth’s surface below 1cm. In these calculations, I
have ignored the time delays introduced by the atmosphere. However, corrections can be made
for atmospheric effects using multiple colors of photons similarly to what is done with the GPS.
Perhaps one advantage of the quantum system as compared to the classical GPS is that entangled
photons exhibit group velocity dispersion cancellation, which may be an important factor for future
engineering and design of a QPS [29-32].

IV. ALTERNATIVE SCENARIOS

A. Position-Only Determination

A QPS can be designed to work in several modes, depending on the needs of the user and the
required scenario. In the above discussion, we have described the case where a user of the QPS
wants to determine both his spatial and time coordinates, (to, xo, yo, zo). A second alternative is
that a user may only need to obtain their spatial coordinates, and he may not need the correct

60



36th Annual Precise Time and Time Interval (PTTI) Meeting

time. In this latter case, the time synchronization portion of the system is not needed, and the
user may find their position coordinates (xo, yo, zo) by having only a corner reflector and a one-way
(reception only) classical channel of communication with the reference frame origin, where the
simultaneity of the three two-photon coincidence counting rate minima is established.

Another mode of operation of a QPS is where we want to determine the position of an object with a
corner cube reflector, such as a geostationary satellite. In such a case, information on the position
of the satellite, ro = (xo, yo, zo), is only needed on the ground. The satellite’s position coordinates
can be determined on the ground using a QPS, and only a corner cube reflector is needed on the
satellite, but no communication channel to the satellite and no on-board clock is needed.

B. User Carries QPS Receiver

The scenarios that we have described above are ones where the measurements (adjusting the optical
delays) and the calculations (to compute ro) are done near the origin of the reference frame. In
a classical GPS receiver, the computations (correlations of PRN codes to at least four satellites)
are done locally in the user’s GPS receiver that the user carries with him. The QPS analog of
this classical GPS scenario is a setup where the biphotons are generated at points E1, E2, and E3,
but the user carries with him the 50:50 beam splitters and photon detectors. In this scenario, the
user controls (and carries with him) the optical delays (see Figure 1), and he locally measures the
optical delays s1, s2, and s3. The user must receive a classical message consisting of the coordinates
of baseline endpoints, Ri, i = 1, ..., 6, and then he must solve the Eqs. (4)-(6) such a case, there
are no clocks on-board the broadcasting satellites (located at positions Ri), however, the user must
carry a clock with short term stability to determine rate of photon coincidence counts from each of
the three baselines (associated with spatial positioning) and also he must do coincidence counting
for time determination (if time is needed). For the three spatial baselines, optical propagation is
then one-way (using the satellite positions as a primary reference system, see below) from satellites
to QPS user receiver. For time synchronization, however, as mentioned previously, the optical
propagation must be two-way (when using the method of Bahder and Golding). In essence, for
each of the four channels, the QPS receiver consists of a beam splitter, two single-photon detectors,
and a controllable optical delay. All four space-time coordinates can be obtained by a user in this
way. One clock in the reference frame must have long-term stability to define coordinate time,
and another clock in the QPS user receiver can have short-term stability. Note that the satellites
do not need to carry clocks, because their positions can be used to define the primary system of
coordinates. This type of QPS is a close analog of the classical GPS.

V. QPS SPACE-TIME COORDINATES

The satellites at baseline points Ri can be taken to define the primary system of reference, even
though the points Ri change with time. The quantities measured by a user of such a QPS are then
(s0, s1, s2, s3), where s0 is the optical time delay (in the HOM interferometer) that will provide
the user with coordinate time in this coordinate system (using the Bahder and Golding method),
and (s1, s2, s3) are the three optical delays in the three interferometers for position determination.
The quantities (s0, s1, s2, s3) are then to be regarded as generalized four-dimensional space-time
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coordinates [33],s0 is a time-like coordinate and (s1, s2, s3) are space-like coordinates. Within
the context of general relativity, such coordinates are as good as any other coordinates, and they
enter into the metric c2dτ2 = gijdsidsj of the flat space-time assumed in this work. Of course, a
transformation from the QPS space-time coordinates, (s0, s1, s2, s3), to an Earth-centered inertial
(ECI) system of coordinates, say (t, x, y, z), is of interest for astrodynamic applications. Such
a transformation can be done approximately by conventional means of tracking the satellites (at
baseline points Ri).

It is interesting to remark that the QPS allows the direct measurement of four-dimensional space-
time coordinates. Previously, it was believed that space-time coordinates were not measurable
quantities [33-36]. Of course, the QPS coordinates (s0, s1, s2, s3) are real physical measurements,
and it is well-known that real measurements are space-time invariants under generalized coordinate
transformations [33].

VI. SUMMARY

I have presented a conceptual scheme for an interferometric quantum positioning system (QPS)
based on second-order quantum coherence of entangled photon pairs (biphotons). A user’s spatial
coordinates are determined by locating three unique minima in three different two-photon counting
rates, associated with three HOM interferometers built on independent baselines. The spatial
portion of the QPS is similar to a classical TOA system; however, a classical TOA system requires
synchronized clocks that keep coordinate time, which is often a difficult requirement to meet.
In contrast, the QPS only requires a clock having a short-term stability to measure two-photon
coincidence counting rates while the optical time delay is adjusted (to locate the minima in the
two-photon coincidence counting rate Rc). Bright sources of entangled photons (biphotons) are
needed.

Several different scenarios were considered for a QPS: one is a terrestrial system and the another
is space-based. In both cases, I computed the accuracy of a user’s position as a function user
position. The function that describes the errors in position has a complex spatial dependence. In
the case of the terrestrial QPS, the position accuracy was relatively poor because the baselines
were located near each other. This could be dramatically improved by moving apart the baselines.

As an example of a satellite-based QPS, I have proposed a LEO-satellite QPS. Neglecting atmo-
spheric effects, calculations suggest that the position accuracy Rxyz of such a QPS can be below
the 1 cm-level for an error (standard deviation) in the optical delays σs = 1.0µm associated with
the minima in two-photon counting rates Rc. The complex dependence of Rxyz on user position
suggests that significant engineering must be done to design a realistic QPS.
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Figure 1: One baseline is shown for the quantum positioning system (QPS). Points R1 and R2 on the
baseline contribute to the definition of the reference frame for spatial positioning. Box E1 contains an
entangled photon (biphoton) source and 50:50 beam spliter; see Figure 2. The quantity D1 is a controllable,
calibrated optical delay.
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Figure 2: An expanded view of the contents of each of the three boxes E1, E2, and E3, which are located on
the three baselines, one of which is shown in Figure 1. Each box contains an entangled photon (biphoton)
source, a 50:50 beam splitter, and two single-photon detectors D1and D2, to perform photon coincidence
counting.
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Figure 3: The baselines are shown for a possible terrestrial QPS that might be used on the Earth. The
baselines lie along the x, y, and z axes, are of length 2a and are orthogonal to each other.
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Figure 4: A plot of the contours of constant 1/Rxyz is shown in the xo − yo plane at zo = 100/
√

3m.
Light-shaded areas are small values of Rxyz. Units on both axes are meters.
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Figure 5: The error Rxyz vs. xo is plotted for yo = 30m and zo = 100 m/
√

3, which corresponds to a line in
Figure 4 with relatively small error Rxyz. The same parameters are used in this plot as in Figure 4. Units
on both axes are meters.
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Figure 6: The error Rxyz vs. a (half the interferometer baseline length) is plotted for xo = yo = 30 m,
and zo = 100 m/

√
3, which corresponds to the high-accuracy light-shaded region in upper right of Figure 4.

Units on both axes are meters.

71



36th Annual Precise Time and Time Interval (PTTI) Meeting

-10

0

10

x

-10
0

10
y

-10

0

10

z

-10

0

10

x-10

0

Figure 7: A schematic of the LEO satellite QPS is shown. Pairs of satellites orbiting Earth, shown by
connecting lines, form the interferometer baselines of length b. Example numbers used in this calculation
have baseline b = 20 km and LEO satellite semi-major axis a = 7360 km .
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Figure 8: Contours of constant reciprocal position error, 1/Rxyz, are shown in the xo − yo plane for zo =
Re/

√
3 and σs = 1.0 µm. Lighter-shaded areas are smaller values of error Rxyz. The semi-major axis of the

LEO satellites is taken to be a = 7360 km and the baselines (satellite pair separation) b = 20 km.
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Figure 9: Plot of position error, Rxyz vs. xo, shown for yo = zo = Re/
√

3 with σs = 1.0 µm. The semi-major
axis of the LEO satellites is taken to be a = 7360 km and the baselines (satellite pair separation) b = 20 km.
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Figure 10: Plot of position error in the radial direction, Rxyz vs. ro, where ro =
√

x2
o + y2

o + z2
o and

σs = 1.0 µm. The semi-major axis of the LEO satellites is taken to be a = 7360 km and the baselines
(satellite pair separation) b = 20 km.
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QUESTIONS  AND  ANSWERS 
 
 
JUDAH LEVINE (National Institute of Standards and Technology):  I’m familiar with that paper, in 
fact, and as I understand that paper, it depends on the fact that the parameters of the medium  the 
propagation delay  is well understood and well controlled.  And that the idea of extending it into the 
atmosphere, which is what those guys proposed, does not satisfy this implicit requirement. 
 
THOMAS BAHDER:  Right.  In other words, if you tried to do Yanhua Shih’s Scheme in vacuum, it 
would fail, because Yanhua Shih’s scheme depends on knowing the exact group velocity in the two 
channels of the two fibers to the two clocks.  So I didn't really describe that, I did not have time. 
 
But this scheme, as you see, works in vacuum, right?  I have to make a comment on that in that paper; it is 
described as if it is a one-way scheme.  Well, if you look at relativity theory, you cannot synchronize 
clocks one way.  It's logically inconsistent. 
 
So really, in order to calibrate your system and measure the group velocity of each channel, you have to 
do a round-trip flight.  But that could have been done at an earlier time if your fibers were stable.  So this 
scheme would work in vacuum, presumably. 
   
WLODZIMIERZ LEWANDOWSKI (Bureau International des Poids et Mesures):  I have one 
question.  You say you neglected most of those errors.  Have you an idea about ...? 
 
BAHDER:  My funding has run out and so, unless I can get further funding for this, this is the end of the 
show.  
  
LEWANDOWSKI:  But it can be much larger than what you are showing here. 
 
Yes.  There are actually some very interesting things in that.  The atmospheric effects can be huge.  On 
the other hand, this single photon propagation had shown that you can cancel dispersion.  You cannot 
cancel propagation delays, but the dispersion of the group velocity is cancelled out.  It is a very weird 
effect. 
 
So there can be some games that may be possible to play.  And I am not sure ... 
 
LEWANDOWSKI:  And you need more money. 
 
BAHDER:  Yes, I need more money. 
 


